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Behavior of quantum entropies in polaronic systems
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Quantum entropies and state distances are analyzed in polaronic systems with short-range (Holstein model)
and long-range (Frohlich model) electron-phonon coupling. These quantities are extracted by a variational
wave function which describes very accurately polaron systems with arbitrary size in all the relevant parameter
regimes. With the use of quantum information tools, the crossover region from weak to strong coupling regime
can be characterized with high precision. Then, the linear entropy is found to be very sensitive to the range of
the electron-phonon coupling and the adiabatic ratio. Finally, the entanglement entropy is studied as a function
of the system size pointing out that it not bounded, but scales as the logarithm of the size either for weak
electron-phonon coupling or for short-range interaction. This behavior is ascribed to the peculiar coupling
induced by the single-electron itinerant dynamics on the phonon subsystem.

DOI: 10.1103/PhysRevB.82.104303

I. INTRODUCTION

In the last years quantum entanglement has attracted enor-
mous interest as a key physical resource at the basis of
quantum-information processing.! In particular, attention has
been devoted to clarify and quantify quantum entanglement
in many-body systems since entanglement measures provide
insights on the quantum correlations of many-body
functions.? For example, entanglement entropy and its scal-
ing properties are currently used in order to better character-
ize quantum phase transitions. In the case of local couplings
between degrees of freedom, the entropy of the reduced state
of a subregion grows like the boundary area of the subregion,
and not like its volume, that is known as area law.> However,
close to a transition, this law is violated since the entropy
becomes divergent as a function of the system size. The size
scaling very often follows a logarithm law.

Tools given by quantum information have been especially
important for mesoscopic systems where several schemes
have been proposed for detection and measurement of
entanglement.* Very recently, a microwave-frequency me-
chanical oscillator has been cooled to its ground state with
high probability and coupled to a quantum bit.>® This cou-
pling preserves the quantum states and allows a time-domain
control of the system. In these experiments the maximum
number of phonons in the relevant mechanical mode is very
low so that one expects that the coupling between mesos-
copic resonator and quantum bit is not strong. Moreover, a
scenario has been proposed in order to detect entanglement
of a mechanical resonator and a qubit in a nanoelectrome-
chanic setup.’

The realization of such devices where many quantum bits
or multiple electronic states are coupled to mesoscopic or
macroscopic mechanical objects is far from being easy.
Therefore, it is important to make theoretical studies of such
systems elucidating the role of the coupling between elec-
trons and oscillators and their entanglement properties. In
particular, the dimension of the system becomes a very im-
portant parameter for the analysis. Instead of considering ar-
tificial devices, one can analyze compounds already existing
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in nature where an array of microscopic oscillators is present
in mesoscopic or macroscopic systems. Therefore, the aim of
this work is to study from a quantum information perspective
a system relevant in many areas of condensed and nano-
scopic matter: the polaron, i.e., a single electron (with many
accessible states in a bulk crystal or a quantum dot) interact-
ing with lattice phonons.® It has been proved that it does not
show any self-trapping phase transition with increasing
electron-phonon (el-ph) coupling but a crossover between
solutions with small extended (large polaron) and large lo-
calized (small polaron) lattice deformations.® Up to now,
only quantum entropies have been analyzed for polaronic
systems with small size and short-range (SR) (el-ph)
interactions.!®!! In addition to quantum entropies, in this
work, distance measures are studied in polaronic models
with arbitrary size taking the free electron as reference state.
We will use a variational approach that is very accurate in all
the coupling and adiabaticity regimes.'>!*> By means of these
tools, the precise position of the crossover region between
weak and strong coupling regime is identified.

Polaron studies extend the analysis of simpler spin-boson
models.'* The entanglement for polaron is very interesting
also for other reasons: it can be considered as a measure of
decoherence of the electronic state due to the coupling with
phonons or dephasing of the phononic state induced by the
interaction with the single electron. From this point of view,
studies of polaronic entanglement are relevant in mesoscopic
systems such as quantum dots in polar semiconductors that
have been proposed as systems for quantum processing.'
Moreover, in these systems, the el-ph interaction is not local.
Therefore, in this paper, we have analyzed the effect of long-
range (LR) el-ph couplings on entanglement amount. It is
found that quantum entropies are strongly dependent on the
adiabatic ratio and range of the interaction. The final part of
the paper will focus on the size scaling of the entanglement
entropy. Even if the system is not critical, the entropy of
polaronic systems is unbounded, and it scales as the loga-
rithm of the size either for weak el-ph coupling or for local
interactions.
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II. MODELS AND VARIATIONAL APPROACH

The prototype model with SR local coupling is the well
known Holstein one'® while that with LR interactions is the
Frohlich one.!” In particular a discrete version of the
Frohlich model will be studied.'® The Hamiltonian of the
polaronic systems is

H=-1>, cjcj+ 0o ajai+Hel_ph. (1)
(ij) i

In Eq. (1) ¢](c;) denotes the electron creation (annihilation)
operator at site i, whose position vector is indicated by 13,»,
and the symbol ( ) denotes nearest neighbors linked through
the transfer integral #. The operator aj(a,-) represents the cre-
ation (annihilation) operator for phonon on the site i, and wy
is the frequency of the optical local phonon modes. Both the
SR and LR models can be described by the general el-ph
Hamiltonian H..,,

Heppn= aw X, f(R; - R)j|)cjci(aj + a}), (2)

ij

where a controls the strength of el-ph coupling, and f(|13,»

—13_,.|) is the interacting force between an electron on the site
i and an ion displacement on the site j. The units are such
that the lattice parameter a=1 and =1.

The Hamiltonian (1) reduces to the Holstein model for

f(|1_éi_1€j|) = 5}5,.,151. (3)
while in the LR case'® the interaction force is given by

AR = Ryf) = (1R = R+ 1), )

Through the matrix element M;, defined as the lattice

Fourier transform of awof(|13,- ), one defines the polaronic
shift EszqM?j/ o, and the coupling constant A=FE,/zt, with
z lattice coordination number, that represents a natural mea-
sure of the strength of the el-ph coupling for any range of the
interaction. Another important parameter of polaronic sys-
tems is the adiabatic ratio y=w,/t.

We adopt a variational approach previously propose
for the study of systems with variable range el-ph interac-
tions and arbitrary size. Not only ground state energies but
also effective masses and spectral weights calculated with
this approach have been compared with the results of nu-
merical approaches finding excellent agreement. The trial
wave functions are translational invariant Bloch states ob-
tained by taking a superposition of localized states centered
on different lattice sites

d12,13

; 1 iR )3
= =2 F Ry (R,), (5)
\N Ell
where
0, = (i) p 0)in
R =" BT G (R, )], [0 (6)

with
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FIG. 1. (Color online) Linear entropy as a function of N for SR
and LR ranges of interaction at y=0.25 and N=128. In the inset,
fidelity and spectral weight as a function of \. The fidelity in the
fully adiabatic regime is also shown.

SOR,) = X [hD(Bage®n+ Hee.]. )
q

In the last equations, N is the number of lattice sites (corre-
sponding to the dimensionality of the electron Hilbert space),
the apex i=w,s indicates the weak and strong coupling po-
laron wave function, respectively, |0) denotes the electron
and phonon vacuum state, hg)(lg) are the phonon distribution

functions and d)g)(ﬁm) are variational parameters defining the
spatial broadening of the electronic wave function. For each
function, the variational minimization becomes accurate ex-
tending the electron wave function up to a few neighbors.

The ground-state properties are determined by consider-
ing as trial state |¢;) a linear superposition of the weak and
strong coupling wave functions

7))
\/ 2 2 Q ’
AL+ By + 2AiBiS;

_%W)> +Bj

Aj

i) = (8)

where |¢7/,(;i>> is the normalized wave function and Sj

:<z,_b,(gw) | J/Ig)) is the overlap factor of the two wave functions.
In Eq. (8) A; and By are two additional variational parameters
which provide the relative weight of the weak and strong
coupling solutions for any particular value of k. In the rest of
this work, we will study the one-dimensional ground state
corresponding to k=k=0 in the physically relevant adiabatic
regime y<1.

III. RESULTS

The main quantity extracted from the wave function is the
phonon-traced electron density operator py

Pe1 = Tropwl | eeo)Wiezol ] )

where Try, denotes the trace over the phonon degrees of
freedom. In order to analyze the entanglement between elec-
tron and phonon, one can use the linear entropy S;

Sp=1- Trel[(pel)z]’ (10)

where Tr, stands for the trace over the electronic degrees of
freedom.'” In Fig. 1, we report the linear entropy as a func-
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tion of the coupling A for SR and LR interactions. It is zero
for a free electron, then it increases with \ reaching the satu-
ration value 1—-1/N that marks the transition to the totally
mixed state. For the Holstein model, S; reaches the satura-
tion value at a value of A\ slightly larger than unity. In the LR
case, S; increases due to the larger entanglement between
electron and phonons. Moreover, the crossover between the
weak and strong coupling regimes is smoother.!® All these
features make the linear entropy a very important quantity to
measure the change of polaron features as function of the
coupling A.

Another important quantity for the analysis of polaronic
systems is the fidelity F

F= Trel[(pfree—el)(pel)]7 (1 1)

where pp.c.o 1S the free electron density operator appropriate
for periodic boundary conditions.?’ The fidelity considered
here is a measure of distance between the polaron and the
free electron state. In the inset of Fig. 1, we show the fidelity
for LR and SR case. It is 1 for A=0 and decreases with
increasing A (for SR it is linear in the intermediate regime)
up to a value close to zero in the strong coupling regime.
Therefore, in the maximally entangled state, single electron
and phonons are so strongly coupled that free electron fea-
tures have completely disappeared. In the LR case, due to the
larger mixing between degrees of freedom, the fidelity shows
a marked tendency toward strong coupling features.

In the inset of Fig. 1, the fidelity is compared to the
ground-state spectral weight Z=|(i_o|ci=0[0)|>) with ¢}
electron creation operator in the momentum representation. Z
measures how much the quasiparticle is different from the
free electron (Z=1). A small value of it indicates a strong
mixing of electronic and phononic degrees of freedom. Z and
F (in the same inset) share the same behavior as function of
\ for both SR and LR case.

The spectral weight has been used to distinguish qualita-
tively a crossover regime (0.1<Z<0.9) between the
quasifree-electron one (0.9<Z<1) and strong coupling one
(Z<0.1).'>13 Our analysis shows that a new quantum mea-
sure, the norm distance, is able to characterize in a quantita-
tive way the crossover region. The norm distance is defined
as the eigenvalue norm of the difference density operator o
=Pe1— Peltree: |01l ,=max;| 7|, with 7, eigenvalues of ¢.' In
Fig. 2, the norm distance is reported for SR and LR cou-
plings. In the first case, it is peaked at a value of \ slightly
smaller than unity. The LR case it is much more interesting
since the distance shows a maximum at about A=0.5, which
corresponds to an intermediate value of the fidelity and spec-
tral weight. Finally, it is possible to evaluate the trace dis-
tance as the trace norm of o/2." This function shows a
behavior very similar to the linear entropy. From the com-
parison of the two distances, it emerges that the maximum
eigenvector of o is always a fraction of the sum of all the
others. Therefore, the peak shown in the norm distance is to
be ascribed to the peculiar structure of the wave function in
this regime.

It is important to access the difference of the results be-
tween adiabatic regime and fully adiabatic limit. In the limit
wy— 0, the phonon fields are classical and the only relevant
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FIG. 2. (Color online) Norm distance as function of X for SR
and LR el-ph coupling at y=0.25 and N=128. The same quantity in
the fully adiabatic regime is also shown. In the inset, the trace
distance as function A for the same values of parameters.

el-ph coupling is . Clearly, quantum entropies vanish. How-
ever, it is still possible to study the fidelity F (shown in the
inset of Fig. 1). F in this regime shows an abrupt change at
A=1 for the SR case. This corresponds to the self-trapping
transition toward a very localized state which breaks the
translation invariance. In Fig. 2, we report the norm distance
in the full adiabatic limit for the SR case. It is strongly larger
than its corresponding quantity with quantum phonons. Ac-
tually, in strong coupling, one eigenvalue is close to unity,
that relative to the electron localized on a single site.

Since quantum entropies are zero in the fully adiabatic
regime, we analyze the behavior of the linear entropy close
to this limit. In Fig. 3, we report the linear entropy for the SR
and LR case as a function of the adiabatic ratio y for two
values of the el-ph constant «. The entropies get larger with
increasing the adiabatic ratio. They are strongly dependent
on « and on the range of the el-ph interaction. Indeed, for
large values of «, the parameter A\ increases very fast as a
function of 7. Therefore, the linear entropy reaches the satu-
ration value close to unity. Actually quantum entropies are
very sensitive to quantum phonon fluctuations so that they
could be used as analyzer of the quantum nature of the os-
cillators.

In the last part of the paper, we will analyze the entangle-
ment or von Neumann entropy Syy

Svw=Tral(pe)n(pe) 1= Shy = S (12)

in particular, its dependence on the size N. The equivalence
between electron and phonon entropy is due to the fact that
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FIG. 3. (Color online) Linear entropy as a function of the adia-
batic ratio y for several values of the el-ph coupling constant « at
N=128.

104303-3



PERRONI, RAMAGLIA, AND CATAUDELLA

the starting point is a bipartite pure state.'® Sy, is zero for
decoupled electron and phonon degrees of freedom, and has
the maximum value of In(N), since N is the dimension of the
smallest subsystem, the electron one.

At fixed size, the linear and von Neumann entropy are
monotonic functions of each other. Therefore, Sy, increases
as a function of N\ up to a saturation value in the strong
coupling regime when the state is maximally entangled. We
have found that, in this limit, for both SR and LR interac-
tions, Syy reaches the maximum value, so that it is not
bounded but scales as In(N). This behavior in the strong
coupling regime is due, in our opinion, to the peculiar “long-
range” coupling induced by the single-electron itinerant dy-
namics on the phonon subsystem.

This result is even more surprising since it is not limited
to the strong coupling limit. The scaling proportional to
In(N) is obtained also in the weak and intermediate regime.
At the second order of the perturbation theory in the el-ph
coupling, in the limit of large N, SVN—>]VPhln(N), where ]Vph
is the perturbative average number of excited virtual
phonons (linear as function of \). We have found by means
of an accurate fitting procedure that, in all the regimes, Syy
scales as &In(N) +a, where & (see Fig. 4) and a depend on the
el-ph coupling. In the inset of Fig. 4, we report the von
Neumann entropies at fixed value of \ as function of the size
N. With increasing the el-ph coupling, ¢ deviates from the
linear dependence, and in the crossover regime it curves to-
ward the value of unity for strong coupling. Indeed, & be-
haves as the linear entropy shown in Fig. 1.

One of the main results of this work is that the entangle-
ment entropy is unbounded and scales as a logarithm of the
size in all the regimes. This result is valid also for LR el-ph
interaction. Actually, Sy, cannot increase more than In(N)
due to the dimensional constraint of the electron Hilbert
space. This study allows to quantify the amount of the en-
tanglement of realistic systems, for example quantum dots in
polar semiconductors, where LR polaronic effects can be im-
portant. In these systems, the entanglement can be also re-
lated to the measure of decoherence of the electronic state
induced by the interactions with phonons. As a result of this
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FIG. 4. (Color online) The quantity & as function of N at y
=0.25. In the inset the von Neumann entropy as a function of the
system size N at fixed value of A.

study, one can estimate that the entanglement entropy due to
el-ph coupling scales as the logarithm of size with a propor-
tionality constant that varies in a simple way as a function of
the parameters.

The experimental detection of entanglement is difficult
for the bulk but feasible for nanostructures. Recently, an
electronic measurement has been suggested in order to detect
entanglement between a qubit and an oscillator making use
of an atomic point contact.” Furthermore, again in the case of
the interaction between qubit and resonator, time-domain
control has been used in order to controllably create a pho-
non in the resonator and to observe the exchange of this
excitation between qubit and oscillator.® Effects of electric
fields have been also analyzed for polarons in bulk
semiconductors.?! The pulse induces not only coherent lat-
tice vibrations but also velocity drift oscillations of the elec-
tron. This is again a demonstration of the more complex
entanglement behavior between electron and phonon degrees
of freedom that has been the focus of this work.
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